manbetx手机版

Manbetx手机版
Manbetx手机版下载页面 Manbetx手机版
Manbetx手机版 新闻
Manbetx手机版 新闻
当前位置: manbetx手机版 >> Manbetx手机版 新闻 >> Manbetx手机版 新闻 >> 正文

我院学科建设系列报告顺利召开

2025-12-02  点击:[]

        2025年11月30日下午,Manbetx手机版下载页面 举办了学科建设系列报告,特邀校内外多位专家学者分享最新研究成果。报告主题涵盖泛函分析、算子理论、扭结理论、博弈论等前沿方向,为师生带来了一场丰富的学术盛宴。

        大连理工大学数学科学Manbetx手机版 副院长刘浏教授以《加权移位矩阵的DW-shell》为题,阐述了DW-shell作为三维几何对象在算子结构分析中的作用,通过加权移位矩阵实例,系统阐述了壳体形状与权重分布的对应规律,并将理论推广至复合算子场景,展示了DW-shell在刻画非正规算子数值范围方面的优势,并分享了在高阶椭圆自同构情形下的最新进展,为算子几何研究开辟了新途径。

        大连理工大学数学科学Manbetx手机版 李风玲教授在《Vassiliev invariants for virtual knotoids》报告中,系统介绍了虚拟扭结的不变量理论的重要进展,李风玲教授通过平坦化结构创新性地构造了两类平滑不变量ℱ与ℒ,并创新性地提出粘合不变量𝒢,证明其具有一阶Vassiliev不变量的普适性。研究通过典型案例比较了不变量的区分能力,推动了虚拟扭结分类理论的发展。

          大连理工大学数学科学Manbetx手机版 博士后祖超老师分享了《Hilbert-Schmidt norm conjecture of homogeneous polynomial submodules in Hardy space over the bidisk》的研究。祖超老师围绕秩一子模的Hilbert-Schmidt范数有界性猜想,结合Toeplitz行列式成果,分析了齐次多项式子模的算子特征,并揭示了该猜想的否定结论。报告还探讨了与Fisher-Hartwig猜想的关联,为泛函分析领域提供了新的研究思路。

        Manbetx手机版下载页面 青年学者李然老师以《H-Toeplitz and Dual H-Toeplitz operators on harmonic Bergman space》为题,从经典Toeplitz算子背景引入,定义了H-Toeplitz算子的运算规则。李然老师重点分享了两个关键结论:第一个是“紧性判定”,第二个是“Hilbert-Schmidt算子判定”。报告的最后,李然老师和在场师生围绕着“符号函数的扩展条件”等问题进行了交流讨论。报告通过具体案例与现场讨论,深化了师生对算子性质的理解。

        Manbetx手机版下载页面 高立彦老师以《博弈论视角下破解公地悲剧的生态补偿策略研究》为题,从公地悲剧的核心矛盾切入,通过囚徒困境博弈阐释个体理性与集体最优的背离逻辑,构建了合作者与背叛者的投入收益模型,引入“补偿阈值”机制与动态补偿策略,通过仿真分析指出补偿强度存在最优值,且动态机制在特定条件下更利于合作演化。该研究为生态资源管理提供了博弈论支持,兼具理论与应用价值。

        本次系列报告聚焦数学前沿问题,既有严谨的理论推导,也有生动的实例分析,充分展现了数学研究的深度与广度。Manbetx手机版下载页面 表示,将继续搭建学术交流平台,推动学科建设与人才培养。

文字:刘林林

编辑:郭振宇

审核:沈    洁

Manbetx手机版