manbetx手机版

Manbetx手机版
Manbetx手机版下载页面 Manbetx手机版
学术动态
学术动态
当前位置: manbetx手机版 >> 学术动态 >> 学术动态 >> 正文

Length minima for a family of filling closed curves on a one-holed torus

2023-12-24  点击:[]

报告题目:Length minima for a family of filling closed curves on a one-holed torus

报告人:张影

报告人简介:张影,苏州大学数学科学Manbetx手机版 教授,从事低维流形的几何拓扑学研究,在JDG, Adv. Math., Amer. J. Math. 等国际数学期刊发表研究论文。

报告内容简介:We explicitly find the minima as well as the minimum points of the geodesic length functions for the family of filling (hence non-simple) closed curves, a^2b^n (n ≥ 3), on a complete oneholed hyperbolic torus in its relative Teichmüller space, where a, b are simple closed curves on the one-holed torus which intersect exactly once transversely. This provides concrete examples for the problem to minimize the geodesic length of a fixed filling closed curve on a complete hyperbolic surface of finite type in its relative Teichmüller space. This is joint work with Zhongzi Wang.

报告时间:2023年12月25日15:30

报告地点:Manbetx手机版 会议室401

欢迎各位老师和同学参加!

Manbetx手机版